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LETTER TO THE EDITOR 

Role of topological defects in the phase transition of the 
three-dimensional Heisenberg model 

Man-hot Lau and Chandan Dasgupta 
School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA 

Received 29 October 1987 

Abstract. A numerical study of the role of topological point defects in the phase transition 
of the classical ferromagnetic Heisenberg model in three dimensions strongly suggests that 
the defects play an essential role in this phase transition. We find that the transition from 
the ordered to the disordered phase is accompanied by a proliferation and unbinding of 
pairs of oppositely charged defects. If configurations containing defects are not allowed, 
then the system appears to remain ordered at all temperatures. 

In recent years, theories [ 11 based on the statistical mechanics of topological defects 
have been very successful in explaining the critical behaviour near phase transitions 
in a large class of two-dimensional systems (for a review, see [ 2 ] )  including the 
superfluid transition in thin 4He films, the superconducting transition in thin metallic 
films and the melting transition in two dimensions. In these theories, the transition 
from the ordered to the disordered phase corresponds to an unbinding of pairs of 
point defects (vortices in superfluids and superconductors, dislocations and disclina- 
tions in crystals) carrying topological charges of opposite sign. It has also been shown 
recently that the superfluid ([3] and references therein) and superconducting (E41 and 
references therein) transitions in three dimensions and the nematic to smectic-A 
transition [5 ]  in liquid crystals can be understood in terms of the statistical mechanics 
of interacting defect lines and loops. In  view of the success of these theories, it is 
interesting to inquire about the role of topological defects in phase transitions of other 
systems (for a review see [ 6 ] ) .  In this letter, we consider this aspect of the magnetic 
phase transition in the ferromagnetic classical Heisenberg model in three dimensions. 
This model is used widely to describe the behaviour of a large number of magnetic 
systems. It is known that the topological defects in the three-dimensional ( 3 ~ )  Heisen- 
berg model are point singularities (the so-called ‘hedgehogs’). This is a consequence 
of the fact that the second homotopy group .rr,(S2) is non-trivial (for a review of the 
classification of topological defects, see [7]). These point defects carry integer-valued 
topological charges of both positive and negative sign. For example, a singularity of 
charge +1 occurs at a point if all the spins around it are directed radially outward 
from it. The energies associated with a single defect and with a pair of defects with 
equal but opposite charge have been calculated [8,9]. I t  is known [9] that the energy 
of a defect pair increases linearly with the separation. However, the statistical 
mechanics of a system of these defects has not been worked out. In particular, the 
question of whether the defect system exhibits an unbinding transition remains 
unanswered. Although the critical behaviour of the 3~ Heisenberg model has been 
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studied extensively by using series expansion, numerical simulations and  renormalisa- 
tion group methods, no  information is available at  present about the behaviour of the 
defects near the phase transition. There have been some speculations on the role of 
defects in this phase transition. A few years ago, Cardy and Hamber [ l o ]  used a set 
of approximate renormalisation group equations near n = d = 2 ( n  is the number of 
components of the order parameter and d is the dimension of space) to argue that the 
topological defects must be explicitly taken into account for a correct description of 
the critical behaviour of the 3~ Heisenberg model ( n  = d = 3) .  We have recently 
performed a real space renormalisation group calculation [ 1 1 1  which tends to support 
this conclusion. Halperin [6] has presented qualitative arguments suggesting that the 
defects are essential for the ferromagnetic to paramagnetic transition to occur in the 
continuum model. These arguments, if correct, would have important implications on 
the present theoretical understanding of this phase transition. In particular, one would 
then have to conclude that the non-linear U model [12] in which singular defects are 
not allowed because the spin field is constrained to have a fixed magnitude at all points 
in space does not provide a correct description of the 3~ Heisenberg transition. An 
understanding of the behaviour of the defects in this system would also be relevant 
to a class of gauge field theories in which point singularities of a similar nature 
(monopoles) are known to occur [ 131. 

In this letter, we report the results of a numerical study of the role of topological 
defects in the phase transition of the 3~ Heisenberg model. We find that the number 
density of defects increases sharply and defect pairs with separations comparable to 
the system size appear as the temperature is increased through the transition. Simula- 
tions in which spin configurations containing defects are not allowed d o  not show any 
indication of a transition to the disordered phase. These results strongly suggest that 
the defects play an essential role in this phase transition. 

We consider the classical Heisenberg model on a 3~ cubic lattice, defined by the 
reduced Hamiltonian 

where S, are three-dimensional vectors of unit length, ( i j )  represents distinct nearest- 
neighbour pairs of lattice sites and K = J /  k ,T ,  J > 0. We set J = k R  = 1 ,  so that K = 1 /  T 
in our notation. For a study of the behaviour of the defects in this model, we need a 
definition of the topological charge on a lattice. The topological charge Q of a point 
defect represents the number of times and the sense in which the spins on a closed 
surface surrounding the defect cover the surface of a unit sphere in spin space. We 
define this quantity for the lattice system by using a prescription similar to one used 
by Berg and Luschere [I41 to classify instanton configurations in the ? D  Heisenberg 
model on a lattice. For each unit cube of the lattice, we divide the six faces into twelve 
triangles, two for each face. Let S , (  i), S,( i )  and S,( i )  be the three spins at the corners 
of the triangle i, where the sequence 1 , 2 , 3  is chosen such that the circuit 1 -+ 2 + 3 + 1 
corresponds to a counterclockwise rotation along the outward normal to the surface 
of the triangle. We then calculate the area, A ( i ) ,  of the spherical triangle formed by 
the three spins on the surface of a unit sphere. The sign associated with A ( i )  is 
sgn [SI(;) (S , (  i )  x S,( i ) ) ] .  The topological charge Q enclosed by the unit cube is then 
given by 

12 

Q =  1 A ( i ) .  
i = l  
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This procedure corresponds to an  interpolation of the spin field along geodesic lines 
on a unit sphere in spin space. Apart from a set of ‘exceptional’ configurations [14] 
of measure zero, this prescription yields well defined integral values for Q. Also, this 
definition of Q ensures that the net topological charge is always equal to zero in a 
system with periodic boundary conditions. 

In our Monte Carlo (MC)  study of the equilibrium behaviour of the defects near 
the phase transition, we used the standard Metropolis algorithm. Typically, 1000- 
2000 MC steps per spin were used for equilibration and 4000-8000 steps per spin were 
used for calculating averages. The simulations were performed for samples with linear 
dimension L = 8 ,  12 and 16 using periodic boundary conditions. As a test of the 
simulation procedure, we calculated the internal energy per spin ( E ) ,  the specific heat 
(C)  and the averages of M ,  M 2  and M 4 ,  where M is the magnitude of the magnetisation: 

M =  l / N x S i  I i I  
(3) 

and  N = L3 is the total number of spins. Since the MC updating procedure generates 
uniform rotations of the whole spin system, a calculation of the MC average of M is 
not meaningful. From finite-size scaling analyses of the observed temperature and 
sample-size dependence of C, ( M ) ,  ( M ’ ) / ( M ) ’  and ( M 4 ) / ( M 2 ) ’  (the brackets ( . . . ) 
denote a MC average), we find that the phase transition occurs at K ,  = 0.69 i 0.01 
( T, = 1.45 f 0.02) and the critical exponents have the values p = 0.36 i 0.04, Y = 
0.71 iO.01. These results are in good agreement with the currently accepted values 
[15, 161. At regular intervals along the MC evaluation of the system at a fixed tem- 
perature, we examined the spin configurations and  determined the topological charge 
Q associated with each unit cube of the sample. The magnitude of the non-zero charges 
was almost always equal to unity. Only a few defects with Q = * 2 ,  and none with 
191 > 2 were found. The observed temperature dependence of the average defect pair 
density ( n )  ( n  = number of defect pairs/ N)  is shown in figure 1 .  The density of defects 
is found to increase sharply as T is increased through T,. The rapid increase of ( n )  
near T, can be seen more clearly in the insert of figure 1 where we have plotted the 
numerically calculated derivative d (n ) /dT  against T for two sample sizes. The tem- 
perature at which d ( n ) / d T  peaks is identical within error bars to the T, determined 
from the thermodynamic data. The peak of d( n)/d T increases in height and becomes 
sharper as L is increased, suggesting that d (n ) /dT  diverges at T, in the thermodynamic 
limit. A finite-size scaling analysis of the data is consistent with a divergence of the form 

with 9 2 0.65. The temperature dependence of (n) for T < T, is well described by the 
activated form, (n) cc exp( -AE/ T ) ,  whereas deviations from this form are observed 
for T >  T,. The value of A E  obtained from a fit to the data is A E  = 12.7i0.7,  which 
is close to 47r, the value expected [9] for the energy of a defect pair separated by unit 
distance in the continuum limit. At low temperatures, we find that defects with opposite 
charges are closely bound together, the separation being just one lattice spacing for 
most pairs. As T approaches T, from below, the number of defects increases sharply, 
and the pairing-up of defects with opposite charges in an unambiguous way becomes 
difficult. However, careful examination of the defect configurations shows that defect 
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Figure 1. Variation of the equilibrium defect-pair density ( n )  with temperature T. The full 
curve is a guide to the eye. The insert shows the temperature dependence of d ( n ) / d T  for 
t w o s a m p l e s i z e s . 0 , 8 ~ 8 ~ 8 ;  A, 1 2 ~ 1 2 ~ 1 2 ; 0 ,  1 6 x 1 6 ~ 1 6 .  

pairs with separations comparable to L/2 appear at temperatures close to or above 
T,. In the L =  16 sample, for example, all defect pairs have separations less than f i  
units for T 1.3 whereas the distribution of pair separations extends up to 9 units at 
T = 1.6. All these features are qualitatively very similar to those found in simulations 
[3, 171 of 2~ and 3~ X Y  transitions which are known to be mediated by topological 
defects. Our results, therefore, suggest that the 3~ Heisenberg transition also corre- 
sponds to an unbinding of defect pairs. 

To investigate further the role of defects in this phase transition, we carried out 
MC simulations with a modified reduced Hamiltonian [3] 

For A =Z 0, the new term in X '  suppresses configurations containing defects. We first 
considered the limit A + 00, which corresponds to restricting the ensemble to states 
with no defects. This restriction was imposed by using the following MC updating 
procedure. We started with a configuration containing no defects (e.g. the fully aligned 
ferromagnetic ground state). Every update attempt was then checked to determine 
whether it would create a defect pair. If it did, then the attempted change was rejected; 
otherwise, it was accepted or rejected according to the usual Metropolis algorithm. 
With this procedure, we simulated the thermodynamics of samples with L = 6, 8 and 
12. The observed behaviour did not show any indication of a transition from the 
ordered to the disordered phase at any temperature. The thermodynamic quantities 
E, C and ( M )  were found to change smoothly with temperature at all temperatures 
up to T + 03 ( K  = 0). The ratios ( M 2 ) / ( M ) '  and ( M4)/( M 2 ) 2  showed an N dependence 
that is characteristic of the ordered phase at all temperatures. The results for ( M )  
shown in figure 2 indicate that the magnetisation remains finite at all temperatures. 
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Figure 2. Temperature dependence of the magnetisation ( M )  obtained from simulations 
in which defects are not allowed. Full curves are guides to the eye. The insert shows a 
plot of ( M )  at T+cc against l/m, N being the number of spins. The straight line is the 
l ineofbest  fit. 0 , 6 ~ 6 x 6 ;  A , 8 ~ 8 x 8 ; 0 ,  1 2 ~ 1 2 x 1 2 .  

As shown in the insert of figure 2,  the sample size dependence of ( M )  at K = 0 is well 
described by the form ( M ) =  MO+ ( Y N - ” ~  with MO-0.18 and (Y = 1.2. This suggests 
that the observed non-vanishing of ( M )  at K = 0 is not a trivial finite-size effect. Since 
most of our results in the A +CO limit were obtained from simulations in which the 
system was warmed u p  from the ground state, we have to consider the possibility that 
the observed behaviour is caused by a trapping of the system in a small region of 
phase space with non-zero M and is, therefore, an  artefact of the updating procedure 
used by us. To check this possibility, we repeated the simulations at  K = O  with two 
other starting configurations with no defects, one  with M = 0 and the other with M = 4. 
As shown in figure 3, all these runs converge to the same value, (M)=0.23. This 
observation confirms that the non-zero values of ( M )  at all temperatures are not caused 
by a trapping in phase space. We have also simulated the behaviour of the model 
defined in (5) as a function of A with K = 0. We find a rapid change of ( M )  near 
A = A , -  2 .  If A is appreciably smaller than A,, then the N dependence of ( M )  is well 
described by the form ( M ) a  1/m, which is characteristic of the disordered phase. 
For values of A somewhat larger than A,, the variation of ( M )  with N is similar to 
that shown in the insert of figure 2. All these results indicate that the system remains 
ordered at all temperatures if A is sufficiently large, and  configurations containing 
defects are essential for the transition to the disordered phase to take place. Similar 
results were obtained in a recent numerical study [3] of the role of vortex loops in the 
3~ X Y  transition. 

The conclusion that topological defects play a crucial role in the phase transition 
of the 3~ Heisenberg model introduces a completely new approach to a theoretical 
understanding of this transition. In particular, it raises the possibility of formulating 
a theory of the critical behaviour at this transition in terms of the statistical mechanics 
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Figure 3. Evolution of the magnetisation M in MC simulations ( L  = 8,  T + W ,  no defects) 
for three different starting configurations ( a )  M =0, ( b )  M = O S ,  ( c )  M = 1.0. 

of the system of point defects. Because of non-linearities arising from the three- 
dimensional nature of the Heisenberg spins, a description of this transition in terms 
of defects would, however, be much more complicated than Kosterlitz-Thouless-type 
theories [ 1, 21 of defect-mediated transitions. We are currently looking into this 
question. 

We are grateful to Amitabha Chakrabarti for his help in the numerical computations. 
This work was supported by the Alfred P Sloan Foundation and by a grant for Cray 
time from the Minnesota Supercomputer Institute. 
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